ASSESSMENT OF THE EFFECT OF BUILDING MATERIALS COST ON HOUSING DEVELOPMENT IN OWERRI, IMO STATE, NIGERIA

Innocent E. Igboekulie¹, Chukwuemeka Monye¹, & Francis F. Joseph²

¹Department of Building Technology ²Department of Quantity surveying, ^{1,2}Akanu Ibiam Federal Polytechnic Unwana Afikpo Ebonyi State, Nigeria Corresponding Author: Innocent E. Igboekulie <u>Innosky127@gmail.com/</u> 08063793593

Abstract

The effects of increasing cost of building materials have made efforts of Imo State Government towards having enough and adequate housing for all citizens an uphill task. The study is aimed at assessing the effects of building materials cost on housing development with a view to establishing a way of predicting the rate of housing development in Owerri, Imo State Nigeria. A sample size of 90 was drawn from the population of 420 building construction professionals in the study area. Primary data was collected from construction professionals using structured questionnaire. Yearly number of residential development from 2009 to 2018 was collected from Owerri Capital Development Authority (OCDA) and market prices of four selected building materials were also collected from 2009 to 2018. The questionnaire responses were analyzed and ranked using Relative Importance Index (RII). Multi Regression analysis was used to analyse the relationship between residential development and prices of the selected building materials. The hypothesis postulated was tested using T –Test. The findings revealed inflation as the most influential factor responsible for increase in the cost of building materials. Secondly, a very strong relationship exists between building materials prices and rate of residential development. However, the general effect of the prices of selected materials on residential development between 2009 and 2018 in Owerri Imo State was found significant. The study recommended that factors responsible for increase in the cost of building materials should be effectively considered by professionals during building production processes to ensure affordable housing developments are delivered.

Keywords: Building, Materials, Prices, construction, professionals, Owerri, Development.

Introduction

Building materials contribute immensely to the quality and cost of housing, from what is used in the foundation to the materials for roofing and finishes, while the building materials industry is an important contributor to the national economy of any nation as its output governs both the rate and the quality of construction work (Udosen & Akanni, 2010). However, researchers in building sector have indicated that between 50 to 60 per cent of the total construction input goes into building materials. Building materials constitute the largest single input in housing construction. This is in line with Arayela (2005), who averred that, the cost of building materials constitutes about 65 percent of the construction cost. As a result, there is an urgent need to address the increasing cost of these products which is said to have

slowed down the growth of the building developments and construction sector in Nigeria, especially in Imo State.

Building materials has been observed to be on the higher prices in Owerri Imo State compared to other neighboring cities. A research by Ameh and Osegbo (2011) revealed that there is always about six to seven percent increase in the price of iron rods in Owerri compared to Aba and Onitsha. Also in 2010 when a bag of cement sold for N1450 in Aba and Onitsha Area it is sold at N1550 in Owerri Imo State. This has been attributed to location and other economic influences (Ameh & Osegbo, 2011).

In Imo State where this study covered, the rise in the population especially in the urban areas (Owerri municipal, the state capital) could no longer be matched with corresponding rise in the provision of good shelter for the populace. A look into the areas review that majority of the people finds it difficult to feed let alone saving enough amount to build good houses for themselves. The major consequence of this sorry state of affair is the expansion and development of shanty or slum settlements to meet the housing needs of the urban poor. This study therefore, assesses how cost of building materials affects adequate and effective housing development in Imo State.

Housing need in Nigeria

Various governments in Nigeria have often expressed interest in housing provision for the masses. A review of past efforts indicates that the achievement level of the various national housing programmes was low. Rapid urban growth associated with accelerated tempo of socio-economic development has seriously aggravated the shortage of dwelling units, resulting in overcrowding, high rent, slum and squatter settlements which are visible features of urban centers throughout the country. Estimate and indicator of the magnitude of housing shortage vary. In summary, they all indicate massive shortages in total housing required.

The total housing needs of the country in urban and rural areas were put to some 8 million units by the year 2000 by Federal Ministry of Works and Housing, and 12-14 million units in 2007 (Akeju, 2007). A more recent estimate puts the figure even higher at 16-17 million units (Aribigbola, & Iranlowo, 2012). At an average cost of 2.5 million naira per housing unit. This indicates that Nigeria will require 35 trillion Naira to fund the housing deficit of 14 million housing units (Onyike, 2007).

A recent study based on the salary structure of public servants in Nigeria conducted by Onyike (2007), showed that no public servant in Nigeria below salary grade level 13 in the federal civil service and salary grade level 16 in the state civil service can afford a property costing N4.75m on a 25 years mortgage at 6 percent if he devotes 50 percent of his salary per annum to housing. At 18 percent mortgage rate, only a federal permanent secretary or his equivalent on grade level 17 can afford the same house. This shows that in the absence of some assistance and affordable strategies, adequate housing is unaffordable to most law abiding Nigerians.

Building materials

Building materials are any material which is used for building purposes. Many are naturally occurring substances such as: clay; rocks; sand; wood; branches; and greeneries and others are non-naturally occurring (man-made) materials/products (Ihuah 2015).

Building materials play a vital role in the construction industry as they are those materials put together in erecting buildings; construction project is not feasible without the inclusion of building materials (Akanni *et al.*, 2014). Akanni *et al.* (2014) explained that building materials remain the most substantial input in project development and, because of this, play an undeniably significant role in the delivery of construction projects. According to Adedeji (2012), about 60% of total housing expenditure is spent on building materials. Notably, Karana, Hekkert and Kandachar (2010) indicated that appropriate use of the building materials, in respect of the expertise involved in the building construction process, determines the strength, functionality and quality of the building. Building materials play a crucial role in enhancing sustainability of buildings and contributing to economic wealth of the nation (Akadiri, 2011). However, Donyavi and Flanagan (2011) observed that in order to reduce construction costs, and to improve productivity, quality and timely project delivery, material management effectiveness must be a main concern. The importance of building materials in effective and sustainable housing development cannot be underestimated.

Factors responsible for increase in the cost of building materials

The cost of building materials has presented a formidable challenge to the construction industry (Akanni *et al.*, 2014). Windapo & Cattell (2013) are in agreement, contending that the preeminent challenge affecting the performance of the construction industry and projects in Nigeria is primarily the increasing cost of building materials. Hence, volatility tends to push the cost of building materials up and transfers a major risk to all parties involved: suppliers, contractors *and* clients. Alabi (2017) also asserted that local currency devaluation was a factor surging the cost of building materials up. Jagboro and Owoeye (2004), Mojekwu, Idowu, and Sode (2013), and Idoro and Jolaiya (2010), in their respective studies, pointed out many factors – such as the change in government policies and legislations, scarcity of raw building materials, fluctuation in the cost of plant and labour, and seasonal changes – as being factors responsible for the escalating cost of building materials.

Other factors responsible for the increasing cost of building materials identified by researchers are these: fluctuation in the cost of transportation and distribution, political interference, local taxes and charges, fluctuation of cost of raw materials, cost of finance, inflation, and fluctuation in the exchange rate. Moreover, Oladipo and Oni (2012) analysed some macro-economic indicators impacting the cost of building materials, which include the following: exchange rate of local currency to other currencies globally, inflation rate and interest rate charge on loans.

According to Alabi (2017) factors responsible for increase in the cost of building materials fall into four categories:(i) Economic related factors; (ii) Building production related factors; (iii) External factors; and (iv) Stakeholder related factors. The aim of this work is to assess the effect of building materials cost on housing development with a view to establishing a way of predicting rate of housing development in Owerri Imo state with the following objectives;

1. To identify the factors responsible for increase in cost of building materials in Owerri Imo State.

2. To determine the effects of building materials cost on housing development in the study area.

3. Determine the trend of housing/residential development and the relationship it has with the selected building materials prices over the last ten years (2009 to 2018) in Owerri Imo State.

4. Determine the effects of the selected building materials prices on residential development between the years 2009 to 2018 and provide a means of predicting residential development in Owerri Imo State.

Materials and Method

Population and study Area

For the purpose of this research, the issue to be addressed is the effect of building materials cost on housing development. With that in mind, the population considered is building construction major actors which are the Professionals (architects, builders, quantity surveyors, engineers) in the building construction industry within Imo State. A population of 420 professionals was considered. This comprise of 43 builders, 214 architects, 76 structural engineers, 87 quantity surveyors in Imo State as sourced from their respective professional body secretariats.

Sample Size

The sample sizes for different strata (professionals) are architects 46, Builders 9, Quantity Surveyors 19 and structural Engineers 16 respectively which is in proportion to the sizes of the strata viz., 214:87:76:43, that made up the population.

Method of data collection

The primary data for the study were collected through the administration of quantitative questionnaires to survey respondents. The secondary data were collected from textbooks, journals, conference proceedings, thesis, archives, National Bureau of Statistics (NBS), Owerri Capital Development Authority (OCDA), Building material merchants, secretariat of some professional Bodies in the construction industry and records of past projects

Method of data analysis

The data collected were analyzed using percentage descriptive analysis, relative importance index, T-test and multi - regression using IBM statistical social package for social science (SPSS 23).

Results and Discussion

Table 1 presents the ranking of responses from respondents on economic related factors affecting the cost of building materials using relative importance index, the greater the index score the higher the rank. Respondents were required to indicate their position on each of the identified factors responsible for rising cost of building materials using a five (5) point Likert scale with values as follows: 5 = Strongly agree, 4 = Agree, 3 = Undecided, 2 = Disagree, 1 = Strongly disagree. The main factor identified to be responsible for increase in cost of building material is 'inflation' which ranked 1st with RII of 0.88, followed by 'exchange rate of naira' ranked 2nd with RII of 0.85. 'Taxes' ranked 3rd with RII of 0.84, 'Market Condition ranked' and 'cost of raw materials' both ranked 4th with RII of 0.82, 'building materials supply and demand' ranked 5th with RII of 0.74, 'scarcity of building materials' ranked 6th with RII of 0.71, 'inadequate production of building materials' ranked 7th with RII of 0.70, while 'interest rate' ranked 8th with RII of 0.66.

Economic related factors Frequency of Response			nse	RII	Rank		
	5	4	3	2	1		
Inflation	39	28	3	4	0	0.88	1
Exchange rate of Naira	35	31	2	4	2	0.85	2
Taxes	34	29	6	5	0	0.84	3
Market condition	35	26	2	7	4	0.82	4
Fluctuation in the cost of raw materials	28	31	9	6	0	0.82	4
Building materials supply and demand	30	18	7	12	7	0.74	5
Scarcity of building materials	32	10	5	21	6	0.71	6
Inadequate production of building materials	30	14	10	8	8	0.70	7
Interest rate	24	14	6	21	9	0.68	8

Table 1: Responses on Economic related factors	responsible for increase	e in cost of Building
Material		

Source: Researcher's field work, 2019

Table 2 presents the ranking of the responses from the respondents on building production related factors responsible for increase in the cost of building materials using Relative importance index the greater the index score the higher the rank. Under site related factors, 'wastages of materials on site' ranked 1st with RII of 0.84, 'uneasy materials handling due to poor planning ranked 2nd with RII of 0.82, 'inadequate site facilities' ranked 3rd with RII of 0.80, 'wrong storage of materials' ranked 4th with RII of 0.72, 'materials pilfering on site' ranked 5th with RII of 0.70, 'materials shortage on site' ranked 5th with RII of 0.67. Then for design related factors; 'changes in design' ranked 1st with RII of 0.82, followed by 'additional work due to changes in design' which ranked 2nd with RII of 0.80, 'wrong estimation by quantity surveyor' ranked 3rd with RII of 0.78, 'design complexity' ranked 4th with RII of 0.77, 'additional works due to errors' ranked 5th with RII of 0.72, 'design team experience' ranked 6th with RII of 0.70, lastly inadequate coordination among design team' ranked 7th with RII of 0.68.

Building Production Related Factors	Frequency of Response					RII	Rank
	5	4	3	2	1	-	
Site Related factors							1
Wastages of materials on site	38	25	1	8	2	0.84	1
Uneasy movement of materials due to poor site planning		28	0	11	1	0.82	2
Inadequate site facilities		18	6	12	2	0.80	3
Wrong storage of materials	24	25	4	16	5	0.72	4
Materials pilfering on site		31	2	23	1	0.70	5
Design related factors							
Changes in design	37	23	3	7	4	0.82	1
Additional work due to changes in design	30	29	4	10	1	0.80	2
Wrong estimation by quantity surveyor	28	25	6	15	0	0.78	3
Design complexity	30	15	4	27	8	0.77	4
Additional work due to errors	21	30	1	18	4	0.72	5
Design team experience	24	17	9	23	1	0.70	6
Inadequate coordination among design team	26	14	3	27	4	0.68	7

Table 2: Responses on Building Production related factors responsible for increase in cost	of
Building Materials.	

Source: Researcher's field work, 2019.

Table 3, presents responses of respondents on external factors responsible for increase in cost of building materials using relative importance index. 'Change in government policies' is the most significant external factor ranking 1st with RII of 0.80. 'Government legislation' ranked 2nd with RII of 0.78, followed by 'lack of substitute for products' which ranked 3rd with RII of 0.75, 'level of advanced technology' and poor nature of construction' ranked 4th with RII of 0.71, 'weather condition' ranked 5th

with RII of 0.70, 'political interferences' ranked 6th with RII of 0.63, lastly, 'natural occurrences' ranked 7th with RII of 0.62.

External factors	Freque	Frequency of Response				RII	Rank
	5	4	3	2	1		
Change in government policies	30	28	3	11	2	0.80	1
Government legislation	32	22	6	9	5	0.78	2
Lack of substitute for products	30	23	1	14	6	0.75	3
Level of advanced technology	26	22	2	16	8	0.71	4
Poor nature of construction	27	19	2	21	5	0.71	4
Weather condition	24	20	3	26	1	0.70	5
Political interferences	17	19	7	21	10	0.63	6
Natural occurrences	19	14	5	27	9	0.62	7

Table 4.3; Responses on External factors responsible for increase in cost of building materials

Source: Researcher's field work, 2019

Table 4 presents ranking of the effects of increase in the cost of building materials on housing delivery using relative importance index. Respondents were required to indicate the extent to which each of the identified factors has an effect on housing development using a five (5) point Likert scale with values as follows: 5 = to a very large extent, 4 = to a large extent, 3 = Undecided, 2 = to a little extent, 1 = not at all. 'Shortage in the Delivery of housing to the populace' was ranked 1st as top most significant effect of increase in the cost of building materials on housing development with RII of 0.87. 'Fluctuation in cost of construction and increase in project abandonment' both ranked 2nd as significant effects of increase in cost of building materials on housing development with RII of 0.85.

Other notable effects include; 'Low income earners are priced out for house ownership due to high cost of building materials' which ranked 3rd with RII of 0.84, 'unemployment of construction workers' ranked 4th with RII of 0.78, 'affect clients expectation on quality of project' ranked 5th with RII of 0.76. Then, 'building collapse due use of poor quality materials' and 'conflicts between clients and contractors due to upward review of contract sum' both ranked 6th with RII of 0.74, 'delay on progress of project' and 'poor quality of construction products' both ranked 7th with RII of 0.71, 'increase in the final cost of building products; final cost higher than budgeted cost' ranked 8th with RII of 0.66, 'Affect Gross Domestic Product(GDP) contribution to the economy ranked 9th with RII of 0.65, 'increased contractors fraudulent practices' ranked 10th with RII of 0.64, 'Affects the aesthetics value of the building product' ranked 11th with RII of 0.63. 'Increase in the cost of Maintenance due to inferior materials used' ranked 12th with RII of 0.62, 'investment return on construction projects are delayed' ranked 13th with RII of 0.60, while 'Completion at the expense of other products' which ranked 14th, 'transportation cost e.g. returning substandard products to the supplier' that ranked 15th, and lastly 'hindered adequate implementation of innovation in construction' that ranked 16th are the less significant effects with RII of 0.59, 0.55, 0.54 respectively.

Effects	Frequency of Response					RII	Rank
	5	4	3	2	1		
Shortage in the delivery of housing to the populace	41	26	0	7	0	0.87	1
Fluctuation in cost of construction	43	21	0	4	6	0.85	2
Increase in project abandonment	45	17	1	5	6	0.85	2
Low income earners are priced out for house ownership due to high cost of building	36	28	4	2	4	0.84	3
Unemployment of construction workers	32	28	0	4	10	0.78	4
Affects clients expectation on quality of project	24	35	2	2	11	0.76	5
Building collapse due to use of poor quality materials		21	1	9	12	0.74	6
Conflicts between client and contractor due to upward review of contract sum		26	3	10	9	0.74	6
Delay on the progress of project works	29	18	3	12	12	0.71	7
Poor quality of construction product		18	3	5	21	0.71	7
Increase in the final cost of building products; final cost higher than budgeted cost		16	0	13	18	0.66	8
Affect Gross Domestic Product(GDP) contribution to the economy		15	1	9	21	0.65	9
Increased contractors fraudulent practices	23	19	0	12	20	0.64	10
Affects the aesthetics value of the building product	19	23	2	11	19	0.63	11
Increase in the cost of Maintenance due to inferior materials used	21	18	4	9	22	0.62	12
Investment return on construction projects are delayed	20	17	2	12	23	0.60	13
Completion at the expense of other products	18	18	0	20	16	0.59	14
Transportation cost e.g. returning substandard products to the supplier	14	15	6	16	22	0.55	15
Hindered adequate implementation of innovation in construction	16	12	3	19	24	0.54	16

Table 4; Responses on the Effects of Building Material Cost on Housing Development

Source: Researcher's field work, 2019.

Table 5; Prices of selected building materials and yearly number of Residential Development	in
Owerri Imo State between the year 2009 and 2018.	

Years	Residential development (numbers)	Cement (50 kg bags) (₦)	High tensile iron bar (ton)	Sharp Sand (3.81m ³) (₩)	Granite (ton) (₩)
2009	654	1850	120,000	10.000	3800
2010	760	1600	122,000	10,000	3800
2011	802	1700	122,000	11.000	3800
2012	651	2200	130,900	12,000	4100
2013	974	2050	126,000	12,000	4200
2014	1194	1800	128,600	13,000	4400
2015	3076	1600	124,400	12,000	4200
2016	1392	2050	167,500	13,500	4800
2017	2353	1500	206,800	13,000	4800
2018	2180	2500	253,800	14,000	5200

Source: researcher's field work (Owerri Capital Development Authority (OCDA) and Building Materials merchants) 2019.

Table 4.5 presents the secondary data collected from OCDA on the number of residential developments in Owerri Imo State between the year 2009 and 2018. It also presents the prices of selected building materials between the year 2009 to 2018 as collected from the various building materials merchants in Imo State.

Figure 1: Time series plot of Residential Development between 2009 to 2018

Source: Researcher's SPSS plot 2019

The above time series plot indicate a positive trend in the growth of residential building in Owerri Imo state. There was a rapid increase in residential building between 2014 and 2015 as shown by the graph but it started dropping down ward in 2016, 2017 and 2018. Residential building in Imo state may keep declining if prices of building material are not brought under control.

Years	Forecast Values
2019	3092.36
2020	3336.78
2021	3581.21

 Table 6: Time series forecast for residential development in Imo State for 3 years (2019 – 2021)

The forecast Values Above indicate a sluggish upward increase in their values, this due to the influence of the mean of the observation within the period under estimation. The actual data of the trend plot above showed that residential building started decreasing from 2016 to 2018.

Regression Analysis

Table 4.6 indicates that there is a very high positive relationship between among the variables under estimation; that is the prices of cement, high tensile iron bar, sharp sand and granite used to measure the rate of residential development between 2008 - 2017. There is 66.5% explanatory power of the independent variables (cement, high tensile iron bar, sharp sand, and granite) over the dependent variable (Residential development). This indicates a good model fit, and implies that about 66.5% of the dependent variable was explained by the independent variables. Durbin – Watson statistic of 2.6 > 2 indicates the absence of serial correlation. Hence, one of the linear regression model assumptions is satisfied.

Table 4.7 Regression model summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin - Watson
1	.815 ^a	.665	.396	700.370	2.595

a. Predictors: Cement, High tensile iron bar, Sharp sand, Granite **Source:** Researcher's SPSS analysis 2018.

Table 4.7 shows the individual effects of the selected building materials on residential development between 2009 and 2018. Thus, the regression line RD = -5136.08 - 1.29 CE - 0.01 HTS - 0.18 SS - 2.94 GR. The mean value(-1.29) of cement in the regression line indicates a negative effect of cement prices on residential development. This implies that a unit increase in the price of cement will cause an average decrease of 1.29 in residential development of Imo state. The value of the mean of iron bar (-0.01) in the regression line indicates a negative effect of iron bar prices on residential development. This implies that a unit increase an average decrease of 0.01 in the regression line indicates a negative effect of iron bar prices on residential development. This implies that a unit increase in the price of of iron bar prices on residential development.

The mean value (-0.18) of sharp sand in the regression line indicates a negative effect of sharp sand prices on residential development. This implies that a unit increase in the price of sharp sand will cause an average decrease of 0.18 in residential development in Imo state. The value of the mean of Granite (-2.94) in the regression line indicates a negative effect of granite prices on residential development. This implies that a unit increase in the price of granite prices on residential development in Imo state.

Model	Constant	Cement	Higher Tensile/ Iron Bar	Sharp Sand	Granite
В	-5136.08	-1.29	-0.01	-0.18	-2.942
Std. Error	4143.26	0.087	0.002	0.069	0.394

Table 4.8 Coefficients	of	the regression	Model
-------------------------------	----	----------------	-------

Source: Researcher's SPSS analysis 2018.

T -test analysis

T- Test was adopted to test the significance of the individual effects of the selected building materials (for the period under consideration 2009 -2018).

 H_0 : There is no significant effect of building material prices on residential development in Owerri Imo state.

 H_1 There is significant effect of building material prices on residential development in Owerri Imo state.

Rule 1: If P – value>0.05; accept H_o; then there is no significant effect.

Rule 2: If P – value <0.05; accept H₁; then there is significant effect.

	Constant	Cement	High tensile Iron Bar	Sharp Sand	Granite
t-value	-12.40	-14.80	-5.72	-2.53	-9.60
p-value	0.0270	0.0199	0.0292	0.0810	0.0381

Table 4.9 T – test distribution for individual significance

Source: Researcher's SPSS analysis 2018.

Table 4.9 indicates there is effect and meaningful contribution as shown in regression line by all the variables under estimation and since the P – values < 0.05 they are significant. Based on the above data there is enough evidence to reject the null hypothesis. So we accept the alternative hypothesis. This means that the general effect of the four selected building materials is significant and indicates that increase in prices of these materials between 2009 – 2018 affected residential developments rate negatively.

Conclusion and Recommendation

The identification of factors responsible for increase in cost of building materials was achieved. All the identified factors attracted more than a 50% agreement rate from respondents. Therefore, it can safely be concluded that the majority of the identified economic related, building production process related factors, and external factors are significant factors responsible for increase in the cost of building materials that hinder adequate and quality housing developments Nonetheless, the most influential factors responsible for increase in cost of building materials should be noted, if improvement in cost effectiveness is to be achieved in the provision of housing in Imo State.

The effects of increase in Building material cost was identified and examined thereby fulfilling the second objective of the study. Among all the identified and assessed effects 'Shortage in the delivery of housing to the populace' stood as the most significant effect of increase in building material cost on housing development in Imo State.

The study of effects of cement, high tensile iron bar, sharp sand and granite prices on residential developments between the years 2009 and 2018 revealed that there is a very strong positive relationship between these materials prices and residential development. The following recommendations are given;

1. These identified factors responsible for increase in the cost of building materials should be effectively considered by stakeholders and professionals during building production processes (from design stage through the construction to completion stage) to ensure affordable housing developments are delivered.

2. Most of the economic related factors identified can only be abated through robust national economic policies, therefore Government should develop and implement favourable economic policies that will reduce inflationary rate, improve exchange rate of naira, regularize tax regimes and market conditions.

3. Wastages of building materials by workers was identified as a site related factor responsible for escalating costs of building materials. This could be as a result of the lack of communication between the involved stakeholders and site workers and lack of material management. Construction stakeholders and professionals should always incorporate practical knowledge acquired in the industry and intelligent management skills to effectively communicate about the project with site workers. Additionally, effective material procurement management is required to avoid wastage of building materials during building production process.

4. Change in design is the identified top design related factor that is responsible for increase in the cost of building materials. A change in design could result from design specification obscurity, errors, omissions and changes ordered by client. This could be avoided through the procurement of experienced architects and engineers from as early as the conceptual phase. To achieve effective design, objectives must be clearly presaged by the client to the designer at the conceptual phase, ensuring that client requirements are met while still maintain timely project delivery.

5. The study advances that the Nigerian government should provide a good platform through provision of infrastructures, empower small and medium enterprises and evolve table policies that encourage the use of locally produced building materials while playing down the over-dependence on imported materials.

References

- Adedeji, Y.M.D. (2012). Sustainable housing provision: preference for the use of interlocking masonry in housing delivery in Nigeria. *Architecture Research*, 2(5):81-86.
- Akadiri, P.O. (2011). Development of a multi-criteria approach for the selection of sustainable materials for building projects. *Unpublished PhD thesis Dissertation, University of Wolverhampton*, Wolverhampton.
- Akanni, P.O., Oke, A.E. & Omotilewa, O.J., (2014). Implications of Rising Cost of Building Materials in Lagos State Nigeria. *SAGE Open*, *4*(4).
- Akeju, A. (2007) Challenges to providing affordable housing in Nigeria, *Paper presented at the 2nd* emerging urban Africa international conference on urban housing finance in Nigeria, held at Shehu Yar'Adua Centre Abuja, October 17-19, 2007.
- Alabi O.A. (2017). Construction project abandonment in Nigeria: A Threat to National Economy, *Knowledge Review*, 16(3):18-23.
- Ameh, O.J. & Osegbo, E.E. (2011). Study of relationship between time overrun and productivity on construction sites. *International Journal of Construction Supply Chain Management*, 1(1):56-67.
- Arayela O. (2005). Laterite bricks: before now and hereafter. Inaugural lecture series 40 delivered at Federal University of Technology, Akure, 5-15. Architecture: African Experience. *Proceedings* of International Conference
- Aribigbola, A. & Iranlowo, O. (2012) Site and services as a strategy for achieving adequate housing in Nigeria in the 21st century, *International journal of humanities and social science* 2. 126-132.
- Donyavi, S. & Flanagan, R. (2011). Tracking and positioning technology and its applications for supply chain materials for small and medium enterprises (SMEs) on construction sites In: Egbu, C. and Lou, E.C.W. (Eds.) Procs 27th Annual ARCOM Conference, 5-7 September 2011, Bristol, UK, Association of Researchers in Construction Management, 465-473.

- Idoro, G. I., & Jolaiya, O. (2010). Evaluating material storage strategies and their relationship with construction project performance. *Proceedings of CIB International Conference on Building Education and Research*, University of Cape Town, 103-110.
- Ihuah, P.W. (2015). Building materials costs increases and sustainability in real estate development in Nigeria. *African Journal of Economic and Sustainable Development*, 4(3):218-233.
- Jagboro, G. O., & Owoeye, C. O. (2004). A model for predicting the prices of building

materials using the exchange rate in Nigeria. *The Malaysian Surveyor*, 5(6), 9-14.

- Karana, E., Hekkert, P. & Kandachar, P. (2010). A tool for meaning driven materials selection. *The Materials & Design Journal*, 31(6):232-241.
- Mojekwu, J.N., Idowu, A. & Sode, O., (2013). Analysis of the contribution of imported and locally manufactured cement to the growth of gross domestic product (GDP) of Nigeria (1986-2011). *African Journal of Business Management*, 7(5), p.360.
- Oladipo, F. O., & Oni, O. J. (2012). Review of selected macroeconomic factors impacting Building material prices in developing countries—A case of Nigeria. *Ethiopian Journal of Environmental Studies and Management*, 5, 131-137.
- Onyike, J. (2007) An assessment of affordability of housing by public servants in Owerri, Nigeria, *Journal of land use and development studies*, 3, 21-34.
- Udosen, J. U., & Akanni, P. O. (2010). A factorial analysis of building\material wastage associated with construction projects. *Journal of Civil and Environmental Systems Engineering*, 11(2), 81-90.
- Windapo, A.O. & Cattell, K. (2013). The South African construction industry: perceptions of key challenges facing its performance, development and growth. *Journal of Construction in Developing Countries*, 18(2):65.