THE IMPACT OF MULTIPROCESSOR DISTRIBUTED
MEMORY SYSTEMS ON PARALLEL COMPUTING
APPLICATIONS

'G. 0. Asoronye, 2J.0. Nwachi-Ikpor, 3C.0. Onyibe
1Department of Computer Engineering,
*Information Communication Technology Department,
*Department of Electrical and Electronic Engineering,
Akanu Ibiam Federal Polytechnic, Unwana, Ebonyi State, Nigeria.

Abstract

Compute-intense calculations and parallel computing concepts on Central Processing Units (CPU) require
long execution times. Hence, to overcome this challenge which is as a result of limited memory for processes of
high matrix orders, developers nowadays use parallel computing approach to develop applications. The aim
of the study is to show the impact of multiprocessor distributed memory systems in executing these applications
built using parallel computing approach with shorter execution times. The parallel computing approach allows
for the breaking of high matrvix order processes into smaller independent parts that will run concurrently or in
parallel. In this study the client-server model was used. The algorithm used was able to compute the client and
server CPU time, execution time, server CPU’s percentage usage on high matrix ovders. It was seen that the
average CPU usage for the 4096 matrix order was almost 50% less the time that it usually took a uniprocessor
to execute. While for a large matrix order of 5032 it took a little over the same time by the multiprocessors to
execute. The study revealed that parallel computing applications execution time can be effectively reduced by
the use of multiprocessor distributed memory systems.

Keywords:
Multiprocessor, Parallel Computing, Distributed Memory Systems, Matrix Order.

Introduction

Increase in human-machine interaction has given rise to more demands for faster computations,
that is to say shorter processing or execution time. The invention of multiprocessor distributed memory
systems is considered a giant stride towards high performance computers as it has made room for
shorter processing time unable to be attained by uniprocessor systems (Deeb et al., 2021). Another
added advantage is the ease of implementing parallel computing paradigms (Gurhem et al., 2019). The
concept of parallel computing is the type of computation where many executions of processes are
carried out simultaneously or concurrently (Azad & Bulug, 2016; Zafari et al., 2019).

The applications for parallel computing comes from two areas; one area is high
performance systems for the speed up of calculations that are compute-intense (Nelson & Palmieri,
2020). The other area is in embedded control systems which require parallel computing concepts to
control either internal processes or external actuators (Brown et al., 2019).

Nowadays, complex processes are broken down into independent parts and treated
individually by separate processors in a multiprocessor distributed memory system concurrently
and then recombined thus, complex applications can have their executable instructions programmed
into smaller independent parts that will run concurrently or in parallel(Benoit et al., 2009). This
approach now makes it possible to measure the time consumed in the execution of processes by
each processor in a multiprocessor distributed memorv system (Rein & Karabtsev, 2020).

African Journal of Integrated Knowledge and Technology

There is no standing rule that all applications will leverage on the gains of parallel
computing approaches. The structure of an application and its programming design style in addition
to the available resources will affect how it maximizes parallel computing approaches (Jones,
2012). To unlock the power of parallel computing, more than one computer (multiprocessor) with
high configurations that are capable of utilizing the related computer resources must be used
(Mehrabi et al., 2019).

The challenge of limited matrix order (i.e. number of elements to be processed at a time)
due to the restrictions posed by the size of available memory in computer systems used in executing
these parallel computing applications has been the major cause of long computation execution time
(Karn & Kumar, 2021). Developers are confined to the matrix order of single processor systems,
hence underutilization of multiprocessor distributed memory systems.

With the above assertion in mind, the study points out the impact of multiprocessor
distributed memory systems on parallel computing applications that makes reduction in the total
execution time for computation possible. This is in a bid to enhance parallel computing approach
on multiprocessor distributed memory systems by relying on active subroutines to alleviate the
shortcomings of memory heap experienced in single processor systems.

Materials and Methods
Hardware Materials

Two computer systems were used in the setup for this study, one as a server and the other as
a client. The configurations of both systems were Dual Core Central Processing Units (CPU) with
processor speeds of 2.6GHz, 4GB of RAM, and 250GB hard disk drive respectively.

Software Materials

The software part of the study similar to the hardware has two aspects, server-side and
client-side software. The putty software on the server was responsible for listening to the client
connection, receiving and sending all controls and responses from and to the client, calculating the
various server processor time variants and CPU usage was carried out using the inbuilt Task
Manager App. The putty software on the client was responsible for making socket connection with
the server, receiving and sending all controls and responses from and to the server, and calculating
the various client processor time variants was done with the inbuilt Task Manager App.

Procedures

A single processor on the server was first used to execute a load (an application
programmed with a parallel computing approach) and accessed by the client. This was done with a
matrix order of 4096. The execution and CPU times of both client and server were measured and
recorded. The same process was done distributing the processing between CPU 1 and CPU 2 on a
50% ratio and the server CPU usages in percentages measured. The entire procedures were
repeated for matrix orders of 5000, 5016 and 5032. In each case the average server CPU usage was
calculated.

351

The Impact of Multiprocessor Distributed Memory Systems on Parallel Computing Applications

Results

Table 1: performance comparison with varied matrix orders

Matrix Client Server

order CPU Execution CPU Execution | CPU 1 CPU 2 Average CPU

time (us) | time (us) | time (us) | time (us) | usage % | usage % | usage%

4096 | 813.41 848.72 641.24 751.82 83 0 41.5
5000 | 1025.73 1060.76 853.83 972.67 88 6 47.0
5016 | 1046.32 1081.23 867.54 968.87 86 21 53.5
5032 | 1078.39 1110.48 904.63 1020.21 85 31 58.0
Discussion

The results from Table 1 showed that both CPU and execution times of the client and server
systems are at very acceptable intervals. This minimal loss in time between the client and server
systems was achieved by implementing an algorithm with routines for very active programming.

Matrix order Vs CPU usage

100 a8

. 86
90 83 - ’ 85
iy o— . ®
o 80
E 70 =E 5]
o 60 a7 2.2 —0
=T) e
z 50 41.5 5
Ui *~— 31
30 21
20
6
10 0
0
4096 5000 5016 5032

Matrix Order

—8—(PU1 CPU2 —@—CPUAvg.

Figure 1: A comparison of matrix order and CPU usage.

The impact of load overflow is clearly depicted, revealing a constant load balancing between CPU
1 and CPU 2 thus maintaining low execution time on the server system. From the graph of Figure 1
above, it is seen that the average CPU usage for the 4096 matrix order was almost 50% less the
time that it usually took a uniprocessor to execute. While for a very large matrix order of 5032 it
took a little over the same time by the multiprocessors to execute.

Conclusion
The findings of this study showed that the challenge of limited matrix order due to the restrictions

posed by the size of memory available in uniprocessors can be effectively taken care of by
multiprocessor distributed memory systems. Hence, developers can leverage on the higher matrix
orders provided by multiprocessors to develop applications that support parallel computing using
either agile software development or plan driven software development models.

352

African Journal of Integrated Knowledge and Technology

References

Azad, A., & Bulug, A. (2016). A matrix-algebraic formulation of distributed-memory maximal
cardinality matching algorithms in bipartite graphs. Parallel Computing, 58.
https://doi.org/10.1016/j.parco.2016.05.007

Benoit, A., Hakem, M., & Robert, Y. (2009). Parallel Computing. Network, 35(1), 83—108.
https://doi.org/10.1016/j.parco.2008.11.001

Brown, G., Reyes, R., & Wong, M. (2019). Towards heterogeneous and distributed computing in
C++. ACM International Conference Proceeding Series.
https://doi.org/10.1145/3318170.3318196

Deeb, H., Sarangi, A., & Sarangi, S. K. (2021). Improvement of load balancing in shared-memory
multiprocessor systems. Smart Innovation, Systems and Technologies, 153.
https://doi.org/10.1007/978-981-15-6202-0_8

Gurhem, J., Petiton, S. G., Tsuji, M., & Sato, M. (2019). Distributed and parallel programming
paradigms on the K computer and a cluster. ACM International Conference Proceeding Series.
https://doi.org/10.1145/3293320.3293330

Jones, T. (2012). Linux kernel co-scheduling and bulk synchronous parallelism. International
Journal of High Performance Computing Applications, 26(2), 136—145.
https://doi.org/10.1177/1094342011433523

Karn, A. K., & Kumar, A. (2021). K -group of absolute matrix order unit spaces. Advances in
Operator Theory, 6(2). https://doi.org/10.1007/s43036-021-00134-5

Mehrabi, M., Giacaman, N., & Sinnen, O. (2019). @PT: Unobtrusive parallel programming with
Java annotations. Concurrency Computation , 31(1). https://doi.org/10.1002/cpe.4831

Nelson, J., & Palmieri, R. (2020). Performance Evaluation of the Impact of NUMA on One-sided
RDMA Interactions. Proceedings of the IEEE Symposium on Reliable Distributed Systems,
2020-September. https://doi.org/10.1109/SRDS51746.2020.00036

Rein, T. S., & Karabtsev, S. N. (2020). Software implementation of the conjugate gradient method
for shared and distributed memory multiprocessor systems. /OP Conference Series: Materials
Science and Engineering, 862(5). https://doi.org/10.1088/1757-899X/862/5/052038

Zafari, A., Larsson, E., & Tillenius, M. (2019). DuctTeip: An efficient programming model for
distributed task-based parallel computing. Parallel Computing, 90.
https://doi.org/10.1016/j.parco.2019.102582

353

CONTRIBUTORY EFFECT OF POST BROODING AGE
ON GROWTH PARAMETERS OF ABOR ACRE BROILER
CHICKEN

"Nwaodu, O.B."; Abdullahi, J'; Eziuloh, N.E.'; Abe, O.S.”
1Department of Agricultural Technology, Akanu Ibiam Federal Polytechnic, Uwanna, Nigeria
2Depar’[ment of Animal Science, Adekunle Ajasin University, Akungba-Akoko, Nigeria
*Corresponding author: email oziomaonumajuru@gmail.com

ABSTRACT

Growths in broiler are mostly in two phases of starter and finisher. The most profound developmental
changes, both qualitative and quantitative, occur at starter phase which are sometimes relatively short when
compared with the finisher phase. Knowing the contributory effect of the finisher phase on growth will guide
farmers to optimized profitability. The study analyzed the growth performance and the correlation between
weight and age of abor acre commercial broiler strains, post brooding. A total of one hundred and fifty day
old chicks were used for the study. The chicks were fed commercial starter mash between day one and 28
days and then changed to finisher crumble for the period of the study. The initial weight of the birds were
taken individually at day 28 and were subsequently weighed at 5 days interval for the duration of the study.
All data collected were analyzed using the general linear model procedure of SAS (1999) to estimate the
heritability, repeatability and the correlation coefficient. The result of the study showed that percentage
weight gain increased at a reducing rate as age increases. The standard deviation (SD) for the mean weight
ranged between 25.17 and 35.54, showing little genetic by environmental variations between the individual
body weight records and the overall mean. The coefficient of variation (CV) were low and ranged between
1.34 and 3.07. The values were relatively similar, suggesting a more precise estimate of the body weight.
The study also recorded an average total weight gain of 1115.51g in body weight for the duration of the
study which translated to 55.78g average body weight on daily basis and 5.00% in growth and development.
The repeatability and heritability estimates obtained in this study were between 0.62 and 0.77, and 0.27 and
0.50 respectively. This was suggestive of reduced impact of environment as the bird increases in age. The
correlations between the ages were positive, high and shows significance (P<0.05) as the bird increases in
age with phenotypic correlation coefficient ranging between 0.63 and 0.92, the genetic correlation
coefficient ranged between 0.51 and 0.89 while the environmental correlation ranged between 0.88 and
0.99. The study therefore concludes that environmental variation fades off as the bird advances in age and
as age increases the weight was increasing at a reducing manner.

Keywords
Arbor Acre, Broiler Chicken, Post Brooding Age, Growth Parameters

INTRODUCTION

Growth involves increase in size and changes in functional capabilities of the various
tissues and organs of animals (Ojedapo et al.,2012) and has consistently been the prime selection
trait since the 1950s, with more recent emphasis placed on meat yield, liveability and feed use
efficiency (Muir and Aggrey, 2003; Laughlin, 2007; Renema et al., 2007). Growth in farm animals
is however, very complex and not a straight forward affair as it entails different phenomenal of
increase in increasing rate or increase at a decreasing rate. The performance of broiler birds is
determined by its genotype and environmental factors (Boukwamp et al.1973; Edward and
Denman, 1975). This is because there are combinations of factors which may favour or disfavour it.

